14,161 research outputs found

    Breaking of scale-invariance symmetry in adsorption processes

    Get PDF
    Standard models of sequential adsorption are implicitly formulated in a {\em scale invariant} form, by assuming adsorption on an infinite surface, with no characteristic length scales. In real situations, however, involving complex surfaces, intrinsic length scales may be relevant. We present an analytic model of continuous random sequential adsorption, in which the scale invariance symmetry is explicitly broken. The characteristic length is imposed by a set of scattered obstacles, previously adsorbed onto the surface. We show, by means of analytic solutions and numerical simulations, the profound effects of the symmetry breaking on both the jamming limit and the correlation function of the adsorbed layer.Comment: 7 pages, 2 eps figures, EPL style. Europhys. Lett. (in press

    Dipolar interactions induced order in assemblies of magnetic particles

    Get PDF
    We discuss the appareance of ordered structures in assemblies of magnetic particles. The phenomenon occurs when dipolar interactions and the thermal motion of the particles compete, and is mediated by screening and excluded volume effects. It is observed irrespective of the dimensionality of the system and the resulting structures, which may be regular or fractal, indicate that new ordered phases may emerge in these system when dipolar interactions play a significant role.Comment: 7 pages, 6 EPS figures. Journal of Magnetism and Magnetic Materials (in press

    Adsorption of Self-Assembled Rigid Rods on Two-Dimensional Lattices

    Get PDF
    Monte Carlo (MC) simulations have been carried out to study the adsorption on square and triangular lattices of particles with two bonding sites that, by decreasing temperature or increasing density, polymerize reversibly into chains with a discrete number of allowed directions and, at the same time, undergo a continuous isotropic-nematic (IN) transition. The process has been monitored by following the behavior of the adsorption isotherms for different values of lateral interaction energy/temperature. The numerical data were compared with mean-field analytical predictions and exact functions for noninteracting and 1D systems. The obtained results revealed the existence of three adsorption regimes in temperature. (1) At high temperatures, above the critical one characterizing the IN transition at full coverage Tc(\theta=1), the particles are distributed at random on the surface and the adlayer behaves as a noninteracting 2D system. (2) At very low temperatures, the asymmetric monomers adsorb forming chains over almost the entire range of coverage, and the adsorption process behaves as a 1D problem. (3) In the intermediate regime, the system exhibits a mixed regime and the filling of the lattice proceeds according to two different processes. In the first stage, the monomers adsorb isotropically on the lattice until the IN transition occurs in the system and, from this point, particles adsorb forming chains so that the adlayer behaves as a 1D fluid. The two adsorption processes are present in the adsorption isotherms, and a marked singularity can be observed that separates both regimes. Thus, the adsorption isotherms appear as sensitive quantities with respect to the IN phase transition, allowing us (i) to reproduce the phase diagram of the system for square lattices and (ii) to obtain an accurate determination of the phase diagram for triangular lattices.Comment: Langmuir, 201

    The Maximum Entropy principle and the nature of fractals

    Get PDF
    We apply the Principle of Maximum Entropy to the study of a general class of deterministic fractal sets. The scaling laws peculiar to these objects are accounted for by means of a constraint concerning the average content of information in those patterns. This constraint allows for a new statistical characterization of fractal objects and fractal dimension.Comment: 7 pages, RevTex, includes 2 PS figure

    Transportation of hazardous materials via pipeline. A historical overview

    Get PDF
    The transportation of hazardous materials via pipelines is often considered a safer alternative to other transportation modalities such as railway, road and ship. However, pipelines often cross industrial and highly populated areas, so that their failure can pose a significant risk to the surrounding environment and the exposed population: the possible release of flammable and/or toxic materials in such areas can generate catastrophic events with very severe consequences. A number of accidents have actually occurred in the past years, and even when no deaths or injured are reported, significant damages to the surrounding environment often occur. This suggests that, given the extremely wide extension of the network worldwide, and the very high amounts of transported materials, a careful analysis is still required. In addition, the construction of pipelines also involves the contribution of expertise from a range of technical areas. As a consequence, the occurrence of accidents and the impact of their consequences, depend on the combination of a large number of parameters. In the present paper, an analysis of data relative to pipelines transporting hazardous materials has been carried out, and the influence of specific issues connected with their type and operation, has been assessed
    • …
    corecore